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K.
SUMMARY ,

This technical report comprises a short review of the theory of Iter ted Function
Systems (IFSs), and a discussion of Recurrent Iterated Function Syste s (RIFSs) -

an extension of IFS codes which allows for encoding of a far wider set o images. The
method and a demonstration of a RIFS-based scheme for automatic compression of
images composed of contours is also presented. Finally, a short discussion and a few
examples of how these concepts can be used to automatically compress grey scale
images is given. S 4  A
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1. INTRODUCTION

The need for data compression is not new. With humble beginnings such as the
use of acronyms and abbreviations in spoken and written word, the methods for data
compression became more advanced as the need for information grew. The Morse
code, developed because of the need for faster telegraphy, was an early example
of a data compression technique. Largely because of the growing role of computer
technology in todays society, the need for digital data compression (for both storage
and communication), is becoming more critical.

In this paper, the specific topic of compression of digital images will be addressed.
If one is to consider that just one eight-bit grey scale, 1024 by 1024 pixel image requires
a megabyte of storage (or for communication purposes, an appropriate bandwidth and
time interval to transfer a megabyte of information), it is easy to understand that,
even with the increasing availability of high volume, relatively inexpensive storzge
medium, there is a great need for developing methods for compression of digital
images.

The most fundamental data compression technique is quantization. There are
three basic forms of quantization; zero memory quantization, block (or vector or
transform) quantization, and sequential quantization. Zero memory quantization is
the quantization of one sample at a time. Digitial images are already quantized, thus
zero memory quantization can be used to compress images at the cost of resolution
(i.e, the number of grey levels per pixel is reduced). Block quantization is a more com-
mon technique used to compress digitial images. Instead of individually quantizing
each data sample (each pixel), a sequence or block of samples is approximated by the
sequence contained in a code book which most closely matches the input sequence.
Thus, the number of grey levels need not be reduced, although the total amount of
information in the encoded image may be reduced. The optimal block quantizer is the
one which has a code book that minimizes the distortion for a given number of quan-
tization levels (i.e., code book entries). When developing a block quantizer, the size
of the blocks and the number of quantization levels are fundamental considerations.
Similar to zero-memory quantization, where each sample is quantized separately, in
block quantization, each block is quantized independently of its neighboring blocks.

The sequential quantization techniques take advantage of the fact that most sources
are Markov sources (i.e., consecutive samples are not statistically independent). The
most common sequential quantization methods are predictive coders, and the most
common of these is called Differential Pulse Code Modulation (DPCM). This nlethod
predicts the value of the next sample value (the prediction is based on a weighted
combination of previously predicted values) and then quantizes the difference between
the predicted value and the actual value.

The measure of the average information in a source is called the entropy (typically
measured in bits per sample). Quantization results in distortion of the data. Tech-
niques that result in a loss of information (distortion), are called entropy reduction
compression techniques. Redundancy reduction is the name given to a group of tech-



niques that remove redundancy from quantized data without resulting in distortion
in the reconstructed data. In the simplest form of redundancy reduction, run length
coding, the value of the pixel intensity followed by a fixed length code word contain-
ing the number of consecutive pixels with the same intensity is stored. Redundancy
reduction techniques that attempt to reduce the average word length (i.e., number of
bits in the code for a given sample) to the entropy of the source are called optimum
source coding (or entropy coding) techniques. The most common of these is Huff-
man coding. Methods such as Huffman coding require the use of a table to define
the meaning of each code word. (In simple run length coding this is not necessary,
because the code word is a fixed number of bits and is defined to be the length of the
run).

There are a variety of different methods based on block and stquential quantiza-
tion (and a host of acronyms to identify them). While the development of variations
on the these methods is an active area of research, the fundamental concepts are
well established. With the work of Mandelbrot, the concept of representing images
(specifically natural images) using non-Euclidian shapes, which he termed fractals,
was introduced (Mandelbrot, 1977). Mandelbrot describes techniques such as frac-
tional Brownian functions, with which it is possible to easily generate images such
as coastlines and mountains which have startling detail and are qualitatively quite
similar to real images. The advantage of these techniques is that they utilize com-
pact algorithms for generating fractals, objects of infinite detail, and thereby capture
the detail and nature of complex real images without requiring retention of a large
amount of information. The deficiency of these techniques, and the problem that
is relevant to the image compression issue, is that they are not useful in accurately
encoding and subsequently regenerating a specific image.

Recent research in the image compression field has been directed toward taking
advantage of the fractal character of images. By using wavelet transforms to perform a
multiscale analysis of edges, Zhong and Mallat (1990) have developed a promising new
compression algorithm. Another new approach, an approach which evolved directly,
out of the study of fractal objects and nonlinear chaotic systems, is the work of
Barnsley (1988a). The cornerstone of Barnsley's work is the Collage theorem, which is
used as a guide in determining the necessary codes (which collectively form an iterated
function system or IFS) for regenerating an approximation to a specific image. The
IFS is in a sense, similar to a nonlinear dissipative system that possesses a strange
attracting set. By using the collage theorem, it is possible to construct the IFS such
that its attracting set is in fact the set of points that make up a desired image.

Although the theory of IFSs allows for one to encode the image such that the
decoded image will be an exact duplication of the original image, for the purpose of
compression it is advantagous to relax the error criteria such that the reconstructed
image will be close to, but not exactly the same as the original image. Therefore, the
techniques described in this report can be classified as entropy reduction techniques.

It should be pointed out that the decoded IFS is an attractor. That is, one starts
with a point (or set points) chosen at random (the points may be inside or outside
the final image) and the system is attracted to the set of points which make up the
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IFS image. This contrasts with typical fractals (for example the triadic Koch island),
which are purely geometric constructs, and not attractors in the sense that the rules of
construction do not take a randomly chosen initial state and dictate the evolution of
this initial state towards a stable final state. In addition, the images generated by an
IFS do not necessarily have fractal character. Labeling the decoded IFS as a fractal
is generally correct but it is not a very meaningful description. The term "strange
attractor" is usually used in the context of a chaotic dynamic system. Because there
are no rules dictating the time evolution of the generation of the reconstructed IFS
image, the system is fundamentally different from a dynamic system. Furthermore,
the Lyapunov exponent (a fundamental measure of chaotic systems) for a chosen
ordering of the IFS iteration is negative, not positive as would be the case for a
chaotic process. Consequently, the images resulting from the decoding of an IFS are
clearly different than what is typically thought of as a strange attractor or a fractal,
and are probably best described as a geometrical attractors.

The following discussion begins with a brief review of the Collage theorem, IFSs,
and recurrent iterated function systems (RIFS). In the following section, a solution to
the problem of automation of the encoding process in the context of contour images is
presented. Results from an implementation of an automated contour image encoder
are given. The final section is a brief discussion (with results) of how these ideas can
be applied towards the automatic compression of grey scale images.

2. REVIEW OF IFS AND RIFS

2.1 Iterated Function Systems

An iterated function system, W, is defined as

M

W= Uw,, (1)
i=I

where each wi is an affine transform. An affine transform is the result of a set of
rotations, skewings, scalings, and translations. The effect of such a transform, wi, on
any point (xn, y.) is described by the set of equations

n+1= aizx + biYn + ei (2)

Y!n+i Cixz + d3ni + fA.

The Collage theorem (Barnsley 1986, 1988a) states that for a set of points (the
image), L, and an IFS, {w1 , w2, ...WNI, the Hausdorff distance h (the maximum of all
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minimum distances from each point in either image to the other image) between the
attractor of the IFS, A, and the set L fulfills the condition

N

h(L, U w.(L))
n=m1

h (L, A) n 1 - )(3)

where s is the maximum contractivity factor for the set of transforms w,,. (The
contractivity factor is the smallest number such that any pair of transformed points
are r.o farther apart than s times the pre-transform distance. Thus, the maximum
contractivity factor is actually a measure of the weakest contractivity.) Hence, from
the collage theorem, if the transforms are restricted such that they are contractive,
there is a guarantee that any iteration on the set of transforms must result in a
bounded set of points.

More importantly, the collage thereom states that if the union of the transforms
w, applied to the image L, reproduces the image L to within some error, then there is
a known upper bound on the possible error between the attractor of the IFS and the
image. By choosing an appropriate IFS, the error between the attractor and the image
may be made as small as desired. For a thorough description of the collage theorem
and the mathematics upon which it is based see Barnsley (1988). Barnsley and
Sloan (1988) have written an article which explains how to perform the encoding and
subsequent decoding of simple images. Boss and Jacobs (1989) have demonstrated
the application of these concepts for the compression of more general images. A
detailed discussion of the encoding and decoding process will not be given here. Such
a discussion can be found in the above references.

The examples of images encoded with IFSs (which are shown in the above ref-
erences) demonstrate some of the capabilities of IFS codes, but IFS codes do have
limitations to their usefulness. When encoding an image using IFS codes, one is
restricted to covering the original image with copies of itself. The collage theorem
guarantees that this can be done, but quite often, it cannot be done with a reasonable
number of transforms. For example, the triangle shown in figure la is very easy to
encode (note the perfect tiling by four transformed triangles shown in figure lb), but
the 'bow tie' shown in figure 2a is very difficult to cover with affine transforms of
itself. A solution to this problem will be given in the next section.

2.2 Recurrent Iterated Function Systems

The collage thereom as discussed above applies to an IFS. A more general collage
thereom that applies to recurrent iterated function systems (RIFS) has been proven
by Barnsley, Elton, and Hardin (1988). The major difference in this technique is that
unlike an IFS, where affine transforms of the entire image are used to collage the
image, in the encoding process for a RIFS, affine transforms of parts of the image
are used to cover other parts of the image. It follows that in a RIFS system, during
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(a) (b)

Figure 1: (a) A triangle and (b) the collage of triangles.

the decoding process the allowability of applying a transform is dependent upon
which transform was last applied. In fact, after a given transform has been applied
(resulting in a point being generated in a specific area of the attractor) only a few
transforms may be allowed, with the remaining transforms having zero probability of
being applied. This is in contrast to an IFS, where any transform may be applied
after any other transform. The added complexity requires that more information
per transform be stored, but as will be shown below, the total number of transforms
required is often greatly reduced, resulting is a net improvement in the compression.

To illustrate to RIFS technique, the bow tie shown in figure 2a will be encoded.
The choice of transforms to be used will not be the most efficient, but will serve to
clearly demonstrate the method.

First, consider the tiling of the bow tie illustrated in figure 2b. The first four
transforms in the encoded image are those which transform the left-hand side of the
bow tie into the four smaller triangles labeled one through four respectively. The
second four transforms in the encoded image are those which transform the .right-
hand side of the bow tie into the four smaller triangles labeled five througb eight
respectively. These eight transformations are given in table 1.

Referring again to figure 2, it is clear that executing transforms 1 through 4 is
allowed only for points residing on the left-hand side of the bow tie. Similarly, exe-
cuting transforms 5 through 8 is allowed only for points residing on the right-hand
side of the bow tie. The transforms that result in points on the left-hand side of the
bow tie are transforms 1,2,3, and 8, while the transforms which result in points on
the right-hand side of the bow tie are transforms 4 through 7. This information is
summarized in the table 2. The transformations given in table 1 combined with the
connection rules in table 2 represent the encoded version of the bow tie.



a b

Figure 2: (a) A bow tie image and (b) a collage of parts of image (a).

Table 1: Transforms to make figure 2.

i a b c d e f
1 0.5 0.0 0.0 0.5 -0.5 0.25
2 0.5 0.0 0.0 0.5 -0.5 -0.25
3 0.5 0.0 0.0 0.5 0.0 0.0
4 0.5 0.0 0.0 0.5 1.0 0.0
5 0.5 0.0 0.0 0.5 0.5 0.25
6 0.5 0.0 0.0 0.5 0.5 -0.25
7 0.5 0.0 0.0 0.5 0.0 0.0
8 0.5 0.0 0.0 0.5 -1.0 0.0

The decoding process for this figure is demonstrated in figure 3. Any initial set of
points can be used to begin the iteration. In figure 3a, we arbitrarily choose a solid
square as the initial image. Furthermore, since no transform has yet been performed,
we arbitrarily assume that the square is on the left-hand side of the bow tie. Following
the rules dictated by the connection matrix, we apply transforms 1 through 4 to the
square. The resulting first iteration of the image is shown in figure 3b. For the second
iteration, the connection matrix requires that transforms 5 through 8 be performed
on the section of the image resulting from transform 4, and transforms 1 through 4
be performed on the other sections of the image. The second iteration of the image
is shown in figure 3c (the grey boxes come from the transforms 5-8, the shading is
only to indicate which transform was last applied). Continuing the process, the third
iteration of the image is shown in figure 3d. After just three iterations it is clear that
the image is converging towards the image of the bow tie.
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Table 2: Transformation connection matrix for figure 2.

FROM FROM
LEFT RIGHT
SIDE SIDE

TOLEFTSIDE 1,2,&3 8
TO RIGHT SIDE 4 5,6, & 7

3. AUTOMATED ENCODING APPLIED TO
CONTOUR IMAGES

The proceeding sections have described techniques which can result in the storage
of data/images with substantial compression, however, the key step of the encoding
process must be done interactively, with a person performing the pattern recognition
(i.e., choosing the appropriate transformations to encode the image). While this does
not preclude the application of these techniques to various problems, it does restrict
the variety of problems to which they may be applied (as examples; compression of
satellite images prior to transmitting them to earth precludes having a person in the
loop, but using an IFS technique to compress a map is a sufficiently finite task, with
no temporal restrictions, that having a person/people perform the encoding would
not necessarily be restrictive). Nonetheless, for the described fractal compression
techniques to be widely applicable it would be necessary to automate the encoding
step, that is, to have a computer do the encoding of the image.

The RIFS technique introduced in the previous section represents a major improve-
ment over the IFS technique in that a far wider variety of images can be encoded. The
bow tie would be quite difficult to encode using an IFS, but as demonstrated in the in
the example, was easily encoded using a RIFS. An improvement of equal importance
is that the RIFS technique breaks up the encoding problem into smaller pieces, thus
enabling one to address the important problem of automation. In this section, a de-
scription of a solution to the automated encoding problem as applied to images made
up of contours is given. Barnsley and Jacquin (1988) have demonstrated the use a
RIFS to (manually) encode contours representing the edges of clouds. The method
described here is an automated implementation of their model. Before addressing the
automation problem, an example of a RIFS as applied to a contour image will be
described.

In figure 4, the solid outline represents a simple contour which we would like to
encode. The numbered points identified on the contour are referred to as nodes, and
the segments between each pair of nodes are referred to as ranges. The underlying
concept which leads to compression using the techniques discussed in this report is
that it is possible to encode an image by finding parts of the image which look similar,
but on different size scales. In figure 4, it is evident that the contour between nodes
4 and 8, and the contour between nodes 8 and 9, fit this criteria. Remembering that
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(a) (b)

(C) d)

Figure 3: (a) A randomly chosen initial condition - a square, (b) the image after one iteration (using
only transforms from the left side of the bow tie, (c) after two iterations (the grey blocks come from
the transforms from the right side), and (d) after three iterations.

transformations must be contractive to assure convergence, let us choose to transform
the segment between nodes 4 and 8 (the domain nodes) to a contour between nodes
8 and 9 (the range nodes). There are six coefficients in the affine transform. Four
of the six coefficients are determined in order to map the domain nodes on to the
range nodes. The last two coefficients can be determined by using a least squares
minimization of the error between the image and the collage (i.e., the transformation
of the domain on to the range). In a similar way, by mapping series of ranges (the
domains) onto each of the ranges, the image can be collaged.

Table 3 summarizes the information that composes the encoded image. The first
item that needs to be stored is c, the number of contours in the image. The next
stored items are ni, a list of the number of range nodes on each contour. In this
example, c equals 1, and nl equals 9. The next item that needs to be stored is an
ordered list of the ni (x, y,) coordinates of the range nodes for each contour. It is clear
from the previous paragraph that it is required that all domain nodes also be range
nodes. The next information that is required is an ordered list of the ni- I domain node
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a b

C d

Figure 4: (a) An example contour image with nodes shown and numbered, (b) the zeroth iteration
of the RIFS of the image, (c) the first iteration of the RIFS of the image, and (d) the final attractor
for the RIFS.

numbers for each range segment. The ordering of the list determines the two range
nodes to which the domain nodes are mapped by the transformation. The remainder
of the transformation is composed of two additional parameters (determined by least
squares minimization) that are needed to completely define the affine transformation.
This information represents the encoded image, and from it the original image may
be regenerated.

The decoding process is shown in figure 4. As explained in the previous paragraph,
the coordinates of the nodes are stored as part of the encoded image. Therefore, the
nodes and the lines connecting them, can be used as the starting point of the iteration
(this is shown in figure 4b). From table 3, the first part of the iteration is to map
the segment between nodes 1 and 4 to the segment between nodes 1 and 2. Next
the segment between nodes 1 and 4 is mapped to the segment between nodes 2 and
3. This process is continued for the entire list of transformations. Figure 4c is the
resulting image after one complete iteration. Because the transformations used in
this example are highly contractive, after just one iteration, the image is very close
to its stable state (figure 4d).

Two computer programs have been written which implement the image encoding
technique described in the previous paragraphs. The first program has an interactive
graphics interface which aids the user in selecting the domain and range nodes nec-
cessary to encode the image. The second program, the one of interest, performs the
encoding automatically. The problem in creating an automatic encoder is finding a
good way to classify sections of the image such that segments which look similar, but
are of different scales, can be identified. The approach taken here can be described



Table 3: Encoded data for figure 4. Columns indicated by the symbol'*' are data which need not
be stored.

Number of Contours Number of Nodes

Range Node Number* x coordinate y coordinate
1 100 50
2 234 71
3 349 128
4 450 225
5 350 225
6 274 150
7 200 225
8 100 225
9 1 00 50

Range Node Numbers* Domain Node Numbers b d
1,2 1,4 -0.0972 0.127
2,3 1,4 -0.0391 0.130
3,4 1,4 0.0037 0.151
4,5 1,4 0.0729 0.000
5,6 1,4 0.3506 0.255
6,7 1,4 -0.2527 0.355
7,8 1,4 0.0729 0.000
8,9 4,8 0.5018 -0.002

as follows. A contour was represented by a list of pixel coordinates. Every nth pixel
was checked to determine if the contour formed by connecting the nth pixels (with
a straight line) curved continueously in the same direction. As long as the contour
continued curving in the same direction, and the total curvature did not excede a
predetermined limit, the next nth pixel was checked. When the curvature changed
direction, or the predetermined maximum curvature limit was exceded, the segment
was terminated at the previous nth pixel. The process was then repeated from that
pixel until the end of the contour was reached. In this way, the contours that made up
the image were divided up into a series of segments. This process was then repeated
for n taking on several different values. Thus, the entire image was segmented several
times, each time using a different scale for the segmentation. In the examples to be
presented in the following section, n was chosen as 4, 8, 16, and 32. The pixel at
which the segmentation was started was staggered in a way such that each segmen-
tation was as independent as possible relative to all the other segmentations. In fact
the image was segmented twice with" n equal 16, the second time starting eight pixels
offset from the first segmentation. The process described here is, in essence, a crude
multiscale classification of the image. A more elegant multiscale analysis of the image
might be achieved by the use of dyadic wavelet transforms (Zhong and Mallat, 1990).
A segmentation based on the maxima of the dyadic wavelet transform on different
scales would result is a similar image classification.
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After the segmentation of the image was complete, the algorithm used the segments
in the biggest segmentation class (32 in the examples below) as ranges to be covered
by the (domain) segments in the biggest segmentation class. If the contractivity
condition, and both a Hausdorff distance criteria, and a rms error distance criteria
were satified, the transformation was saved as part of the encc?.ed image. When
a satifactory transformation was identified, the segmentation lists were updated as
necessary to ensure that ultimately, the ranges would cover the entire image, and all
domains would be composed of consecutive ranges (i.e, all domain nodes were also
range nodes). For instance, if a segment was covered (i.e, a range was defined), then
any potential nodes in all of the segmentations lists between the end points of the
covered range were eliminated. After all possible "32" on "32" coverings had been
checked, a check of the smaller segmentation classes was performed in a nested loop.
The outside loop incremented the range classes ordered from biggest to smallest,
and the inside loop incremented domain classes, ordered from biggest to the current
range class. Each time an acceptable tranformation was identified which resulted in
an alteration to the segmentation lists, the indicies on the nested loops reverted back
to the point necessary to recheck any new segments that may have been created.

To assure that the automated collaging would ultimately cover the entire image,
any segment 8 pixels or less in length was covered by the best possible contractive
transform, whether or not the Hausdorff and rms error criteria were satisfied. If the
entire nested loop was executed, and segments were still left uncovered, all uncovered
segments were cut in half, and the nested loop was executed again.

An example of the results of this system are shown in figures 5 and 6. Figure 5a is a
copy of a 960 by 428 pixel image of Point Loma (the peninsula in San Diego on which
NOSC is located). Figure 5b is a decoded image resulting from a manual encoding
of the image in 5a. The encoded image of figure 5b required 4944 bits of storage.
The Hausdorff distance (the distance of the "worst" point in the decoded image to
the target image or visa versa) for figure 5b is 3.0 pixels. Figure 5c was a decoded
image resulting from an automated encoding of figure 5a. The automatically encoded
image required 9120 bits of storage, and the Hausdorff distance is 2.236 pixels. The
amount of data compression varies depending on how the original image is stored.
Storing the image as one bit per pixel would require 410,880 bits. Encoding the bit
map using an adaptive Lempel Ziv code requires 19352 bits. An efficient packing of
the x,y coordinates used to create the original image requires 12700 bits. Using this
(which in a sense is already a highly compressed representation of the image) as a
comparison, the data compression of the automatically encoded image was 1.4 to 1.

The encoding of an image entails a mapping of sections of the image onto itself.
As a result, an increase in the amount of information contained in the original image
can often lead to an increase in the data compression of the encoded image. This
is evident in the example shown in figure 6. Figure 6a is a copy of an 800 by 800
pixel image of Baja California. Figure 6b is the decoded image resulting from an
automated encoding of figure 6a. The encoded image requires 14160 bits of storage,
and the Hausdorff distance is 2.236 pixels. Encoding the target image bit map using
an adaptive Lempel Ziv code requires 43552 bits. An efficient packing of the x,y
coordinates used to create the original image requires 32660 bits. Using this as a
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a b c

Figure 5: (a) The original image of Point Loma, (b) the manually encoded Point Loma, and (c) the
automatically encoded Point Loma.

comparison, the data compression was 2.3 to 1, significantly better than the image of
Point Loma.

An important limitation of the contour encoder described here is that the image
must be represented by a list of contours, each contour being made up of an ordered
list of lit pixels. A program can be written to analyze an image stored as a pixel map
and extract a list of contours (and in fact as a front end of the encoder described
above, the authors have written code to perform this task), but such a program is
quite complicated and in most cases takes longer to run than the encoding process
itself. If the encoder described in this section is to find application, it would likely be
for applications where the images are already represented in the correct form.

It should be emphasized that the compression ratios quoted above are relative
to an extremely efficient representation of the data. Furthermore, there is relatively
little information in the contour image to begin with. It is therefore rather impressive
that the resulting compression was attained with such small error in the regenerated
image.
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Figure 6: (a) The original Baja California image and (b) the automatically encoded Baja.

4. AUTOMATED ENCODING APPLIED TO GREY
SCALE IMAGES

Athough the automated encoding of contour images described in the previous
section results in good compression, applications for such a system are relatively
limited. The important question to address is that of compression of grey scale images.
The applications for an improved method of compressing grey scale images are general
and wide spread. Jacquin (1989) has demonstrated the automated encoding of 256
by 256 pixel 6-bit (i.e., 64 levels of grey) grey scale images using a technique based on
iterated transforms. The reports of progress by Barnsley and Sloan (Iterated Systems
Inc.) using variations of these (and possibly other proprietary) techniques to encode
grey scale (and color) images are unclear, but nevertheless very impressive (Science,
1989 and Scientific American, 1990).

Figure 7a is a representation of a section of the Digital Terrain Elevation Data
Base (in this case, an area in the fjords of Norway, Long. 50 - 50 25.6'E, Lat. 610
- 61* 12.8'N). Elevation is represented as different tones of grey, white being the
highest elevations, black the lowest (which in this image is ocean). The image is a
256x256 pixel, 8-bit grey scale image. The image in figure 7b is reconstructed from
an automatically encoded version of figure 7a. The encoding was accomplished using
the same concepts as those detailed in the previous section for the encoding of contour
images. The compression of the encoded image was 23:1. The rms error per pixel of
the reconstructed image was 7.8, resulting in a signal-to-noise level of 30.3 db.

Images of human faces are commonly used to evaluate image compression tech-
niques because they require a robust compression algorithm. The image in figure 8a
is a standard test image. It also is a 256x256 pixel, 8-bit grey scale image. Fig-
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Figure 7: (a) Elevation map of a section of Norway and (b) a compressed version of (a).

ure 8b is reconstructed from an encoded version of figure 8a. The compression of the
encoded image was 9.8:1. The rms error per pixel of the reconstructed image was
9.16, resulting in a signal-to-noise of 28.9 db. These results are comparable to more
conventional image compression techniques, but are impressive in light of the fact
that these represent initial results, and with further work improvement in both the
compression and accuracy of the images can be expected.

Another class of images of interest is that of man-made objects. Figure 9a shows
a 512x512, 8-bit grey scale image of an aerial photo of El Toro Marine Corps Air
Station. The image shown in figure 9b is the reconstructed image after a compression
of 10:1. The reconstructed image has an error of 12.3 rms or a signal-to-noise of
26.3 db. The figures 7-9 clearly show the robustness of the method to a wide variety
of image classes.

The bridge between automatic encoding of contours, and the method used here
to encode grey scale images is not obvious, but is in fact conceptually simple. The
contour images dealt with in section 3 of this report are two dimensional objects, i.e.,
one must specify the x and y coordinate for each pixel in the image that is turned
on. The grey scale images discussed in this section are three dimensional objects,
i.e., one must specify two spatial coordinates plus the value of the grey scale for each
pixel in the image. Therefore, the first step towards encoding grey scale images is
generalizing equation 2 such that each transform, wi, acts upon the three coordinates
(z, y, z) according to the equation
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Figure 8: (a) A test image of a human face and (b) the compressed version of (a).

Xn+I = ax.,iXn + axviY. + axz,iz. + bx,i

Yn+I = ayxixn + an,iyn + ayzizn + by,i (4)

z.+l = azxfix + az,iy. + a.,iz. + b.,i

where z represents the value of the grey scale for each pixel. The collage theorem
still holds for systems of dimension greater than two, so, in principle, the problem
can still be solved. Unfortunately, the three dimensional affine transform given by
equation 4 is an extremely general transformation. The task of finding the best set
of general three-dimensional transformations that encode an image would be a mon-
umental computational task, even if a framework for such a computation could be
developed. To automatically encode the images shown in figures 7 and 8, restrictions
were imposed on the coefficients of the general affine transform, thereby greatly re-
ducing the number of possible transformations. These restrictions served two primary
purposes. First, they facilitate faster identification of a good set of transforms to en-
code the image (the images in figures 7 and 8 were encoded in less that three minutes
on a Convex computer), and second, they allow for efficient storage of the encoded
information (i.e., a more general transformation will require more information to be
stored to define it). A detailed description of the model and implementation of the
encoding algorithm for grey scale images will be published separately (Fisher, Jacobs,
Bose, 1990).

Before concluding, it should be noted that the problem of encoding of color images
(which are in fact the combination of a grey scale image for each of the three primary
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Figure 9: (a) An image of El Toro MAS and (b) the compressed version of (a).

colors) is essentially solved by the encoding of grey scale images. In fact, one can
expect that increased compression will be achievable when encoding color images
because of the similarity between the images which make up each color plane. One
may take advantage of this similarity to encode the image more efficiently.

The fractal-based compression techniques discussed here are new and powerful, and
their potential applications are numerous. The progress shown here and by others
working on these techniques provides motivation for continued work in this area.
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